

<u>Série 12</u>

Question Courte 12.1

Sachant que l'on ne peut dépasser une contrainte σ de 1500 MPa dans une corde de piano de masse volumique ρ , **déterminer la longueur maximum** l **que peut avoir une corde en acier donnant la note la** (440 Hz).

Exercice 12.2

Dans la figure ci-dessous on a illustré une barre prismatique de longueur l, de module d'élasticité E, de section A et de masse linéique μ_1 . La barre est encastrée en ses extrémités, mais un des encastrements n'est pas parfait et on le modélise par un ressort de rigidité k.

En posant $\lambda = \frac{kl}{EA}$, déterminer l'équation donnant les pulsations propres axiales de la barre en fonction de la constante k.

Calculer ensuite les valeurs extrêmes de la pulsation fondamentale ω_1 et esquisser la variation de cette dernière en fonction du paramètre λ .

Figure 12.2.1 | Barre avec encastrement non parfait modélisé par une rigidité k

Exercice 12.3

Etablir l'équation aux pulsations propres de flexion d'une poutre encastrée de longueur l, de module d'élasticité E, de section à moment d'inertie l et de masse linéique μ_1 .

Calculer la pulsation propre ω_1 de la fondamentale dans le cas particulier d'un profilé DIN 16 en acier de 3 m de long.

Application numérique : $I = 2492 \text{ cm}^4$, $\mu_1 = 42.6 \text{ kg/m}$, E = 210 GPa.

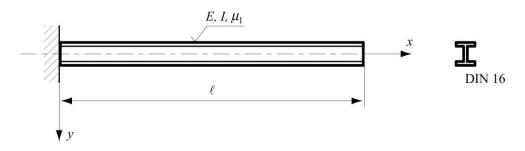


Figure 12.3.1 | Poutre de standard DIN 16

Exercice 12.4

Une barre cylindrique de longueur l, de masse volumique ρ , de module de glissement G et de section à moment d'inertie polaire I_p , est encastrée à l'extrémité gauche (x=0) et comporte un disque indéformable d'inertie J en x=l.

Etablir l'équation de fréquence des vibrations de torsion et donner la forme générale de la rotation $\varphi(x,t)$.

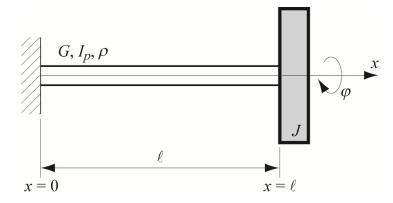


Figure 12.4.1 | Schématique de la barre cylindrique.